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Abstract 
 
Usage of the platform-neutral bytecode interpreters is often limited by their restricted performance. Just-in-time 
compilers effectively solve this problem. However they are hard to develop and retarget. This paper demonstrates that 
dynamic code generation from the templates created by a C compiler can be used to build a simple and highly-portable 
JIT compiler.  
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1 Introduction 
 
Design of the existing JIT compilers generally follows the design of the common static compilers. Major differences 
come from the fact that JIT has to be quite fast since time spent for compilation is a part of the total program’s running 
time.  Some JIT compilers do selective compilation of the most speed-critical sections while using interpreter for the rest 
of the program. This gives additional time for JIT compiler to make more aggressive optimization that could be as good 
as optimization of a quality static compiler. JIT compilers are often developed as a companion of a bytecode interpreter. 
Many interpreting languages were designed to be platform-independent. Indeed classic bytecode interpreters are very 
portable. Existing JIT compilers require substantial changes to be ported from one platform to another. Porting JIT 
compiler requires in-depth knowledge of the target platform architecture. Hard to port and complicated JIT compilers 
are often out of reach for small development teams especially in research projects. 
  
Suggested technique can be used to considerably increase the performance of an already existing switching, threaded or 
direct threaded bytecode interpreters. Existing compiler from source language to bytecodes instructions may be reused 
with the new JIT compiler. Carefully designed instruction set of the bytecode interpreter can be used as a foundation for 
the JIT compiler. Retargeting the JIT compiler for a new platform takes little effort and does not require any assembly 
language programming. Experience project for Lemick interpreter demonstrates 2 to 50 times speed up over pure 
switching interpreter.  
 
 
2 Portable JIT compiler from bytecodes to the inlined machine code 
 
In the suggested scheme a JIT compiler transforms bytecodes into a machine code using compiled code blocks or 
templates. During the compilation the JIT compiler substitutes a bytecode instruction with a corresponding template. 
Besides just copying, the JIT compiler can replace parts of the template with the operands of the bytecode instruction. 
Due to its simplicity this kind of JIT compiler should be very fast. Compilation using templates totally eliminates 
instruction dispatching overhead that it’ alone gives significant performance boost. Inlining as a way of reducing 
dispatching overhead was first suggested in [1]. One important consequence of zero dispatching overhead is that 
previously interpreted languages could use very fine-grained instruction set as they migrate from interpreting to JIT 
compilation. Fine-grained instruction set with a good optimizing compiler to bytecodes could be a way to achieve the 
performance comparable to those of optimizing C compilers 
 
Most complicated parts of implementing such JIT compiler are building proper code templates and discovering 
argument offsets inside the templates. 
 
 
 
 
 



 

 2 

2. 1 Code templates 
 
Code templates are created with any available C compiler for the target platform. GNU C first-class labels are needed to 
mark templates code boundaries; however it is possible to emulate this GNU C specific feature with just few lines of 
asm. 
 
There are some restrictions on the templates of machine code. A machine code template must be relocatable to be 
inlined. However it may be used even if it can not be inlined. The JIT compiler compiles non-relocatable templates as an 
absolute jump to a template. In the extreme case when all the templates are non-relocatable the JIT compiler will 
produce some kind of the direct threaded code*. 
 
To be relocatable a template must comply with the following restrictions: 

• All the function calls have to use the absolute address of the called routine. Relative addresses are invalidated 
when the code template is copied to a new location. On many platforms C compilers use hidden function calls 
to implement some operations. A special care should be taken to detect such cases. 

 
• If a bytecode instruction has immediate arguments then corresponding constant values in the code template 

must be compiled inline. For C compilers it is a common practice to put a value in the constant pool and then 
refer to it by an address.  

 
• Code templates should not contain relative jumps that cross a border of a code template.  JUMP-like bytecode 

instructions are the only exception. For them the JIT compiler will write the proper displacement value as an 
instruction operand. 

 
• A function which contains code templates is not intended to do something meaningful. Sometimes C compiler 

optimizations may break templates consistency. Any part of a code template and a code template as whole 
should appear as a reachable code to the compiler to avoid “dead code” optimization. The result of the every 
calculation made inside the code template should appear to be useful to the compiler. 

 
Code templates which can not be made relocatable are marked as non-relocatable. Non-relocatble templates the JIT 
compiler handles in a special way. Instead of the template code, the JIT compiler will write a jump to the template code. 
A relocatable template of an absolute jump instruction should be present in the templates set. In multi-threaded 
environment non-relocatable templates should not have any operands. Non-relocatable (NR) templates should pass 
control back to the next instruction in the compiled machine code. A realistic and thread-safe way to do this is to push 
return address on the stack just before the jump to the NR template.  
 

 
 

Figure 1: Compilation of non-relocatable templates 
 

Notice that machine code on the figure 1 is also created with the help of templates. First two lines are from the template 
that calls function pushint with one immediate argument. Third line could be produced by a relative jump template.  
 
In C labels can not be placed outside functions thus all the templates are put inside a single function. If the function 
containing code templates has local variables then the compiled machine code should begin with the function prologue. 
The function prologue code allocates space on the stack for the local variables. If the control passed to the compiled 

                                                 
* An absolute jump instruction should be relocatable to implement this variation of the direct threaded interpreter.  

… 
NRT: 
   …  
   ra = popint(); 
   goto *ra; 
NRT_END: 

0FEC: MOV REG, 0FF8 
0FF0: CALL pushint 
0FF4: JUMP NRT 
0FF8: … 

Machine code NR template 
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machine code using CALL-style instruction then the compiled machine code should end with the function epilogue. The 
function epilogue code does the proper return from the function call. 

 
 
 
 
 
 
  
  

Figure 2: Function-style call 
 
Code templates can be written so that they use only global or static variables. In this case compiled machine code can be 
executed with an absolute jump, like goto *address. To return back to the caller the compiled machine code should end 
up with a jump to some address defined by the caller.  

 
 
 
 
 
 
 
 

Figure 3: Goto-style call 
 
Function-style call is easier to use, especially in multi-threaded environments. Below is an example of the tiny yet 
complete code templates function. Two instructions, MOVAI and MOVBI take arguments – integer numbers. Since it is 
not guarantees that variables a_int and b_int will be really allocated in the registers these templates can be only used 
with a function-style call. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: templates function 
 
The JIT compiler needs templates addresses and their operands offsets. Here is the code to build the templates table. 
Macros defenitions can be placed anywhere. Table construction code should be placed inside the templates function. 
 
 
 
 
 

 void* codemine(void* args) { 
register int a_int, b_int; 
void* retpos = &&LFOOTER; 
LHEADER:  

 [here should be code to build the instructions table] 
… 
sMOVAI: 

  a_int = UNIQUE_4B(111); 
 sMOVBI: 
  b_int = UNIQUE_4B(111); 
 sADDI: 
  a_int = a_int + b_int; 
 sMULI: 
  a_int = a_int * b_int; 
 sEXIT: 
  goto *retpos; 
 eEXIT: 

   … 
   dummy(a_int, b_int);  

  LFOOTER: 
  return 0;} 

typedef void* (*compiled_start_t)(void*); 
… 
compiled_start_t compiled_function; 
void *function_args; 
… 
compiled_function  = compile_bytecode(bytecodes_array, templates_set1); 
compiled_function(function_args); 

void *compiled_code, *return_address; 
 … 

compiled_code  = compile_bytecode(bytecode_array, templates_set2); 
 *return_address = &&L1; 
 goto *compiled_code; 
 L1: 
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Figure 5: templates table construction 
 
Now it is obvious how to compile this bytecode into the machine code: 
 
 
 
 
 
 
 
 
 
 
2.2 Templates portability 
 
Immediate values that can not be handled within a single instruction, C compiler breaks into the several parts. For i86x 
these parts are machine words, in case with i86x-32 their size is 32 bits. Example below shows that 64 bits double 
constant is broken into two 32 bits parts. Thus ODR should look for two 32 bits fields when dealing with double type.  
  
Long double type that is 12 bytes long on i86x-32 is broken into three 32 bits parts. If C compiler supports long long 
type it is represented as two words, the same case is with double type. 
Sometimes C compiler will use a reference to the value in the constants pool instead of an immediate value. However 
there is a portable way to make C compiler output relocatable code for constants assignment. 
 

 
 

Non-relocatable constant assigment Relocatable constant assigment 

C code 
double a; 
a = imm; 
 

double a; 
register int *b; 
… 
b = &a; 
b[0] = bits(imm, 0, 31); 
b[1] = bits(imm, 32, 63); 

Sparc assembler 

.LLC0: 

.uaword imm 
…  
sethi   %hi(.LLC0), %o1 
or      %o1, %lo(.LLC0), %o0 
ld      [%o0], %o1 
st      %o1, [%fp-32] 
sethi   %hi(.LLC0), %o1 
or      %o1, %lo(.LLC0), %o0 
ld      [%o0], %o1 
st      %o1, [%fp-28] 
 

sethi   %hi(bits(imm,10,31)), %o1 
or      %o1, bits(imm,0, 9), %o0 
st      %o0, [%fp-32] 
sethi   %hi(bits(imm,42,63)), %o1 
or      %o1, bits(imm,32,41), %o0 
st      %o0, [%fp-28] 

 
imm here is a 64 bit double constant. bits(value, start, end) is a pseudo-function that cuts end – start bits begining from 
start bit and shifts the resulting value start bits right. 

#define ADD_INST(c, s, e) memcpy(cwp, s, e – s); \ 
cwp += e – s; it[c].args = 0; 
it[c].s = s; it[c].e = e; \ 

#define ADD_INST_1ARG(c, s, e, o1) memcpy(cwp, s, e – s); \ 
cwp += e – s; \ 
it[c].s = s; it[c].e = e; \ 
it[c].args = 1; it[c].argsof = o; 

 
ADD_INST_1ARG(IN_MOVAI, &&sMOVAI, &&sMOVBI, OFS_MOVAI) 
ADD_INST_1ARG(IN_MOVBI, &&sMOVBI, &&sADDI, OFS_MOVBI) 
ADD_INST(IN_ADDI, &&sADDI, &&sMULI) 
ADD_INST(IN_MULI, &&sMULI, &&sEXIT) 
ADD_INST(IN_EXIT, &&sEXIT, &&eEXIT) 
ADD_INST(IN_ENTER,codemine, &&LHEADER) 

ENTER    ; function prologue 
MOVAI 1  ; load 1 (integer) into register A  
MOVBI 2  ; load 2 (integer) into register B  
ADDI  A  ; add A and B and store result in A 
MULI  A  ; multiply A and B and store result in A 
EXIT     ; leave function. A = 6; B = 2 
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sethi instruction sets higher 22 bits of a register and clears all the remaining bits. or is an inclusive-or operation.  
 
 
2.3 Instruction operands in the JIT compiler 
 
Many bytecode instructions require arguments. Even if a bytecode interpreter is a pure stack machine there are still some 
instructions which take immediate arguments not from the stack. To simplify the JIT compiler and make it faster it is a 
good idea to pass only immediate values as arguments. All the rest like registers and operands types is better coded in an 
opcode of an instruction. So instead of a single instruction that accepts several different sets of arguments you should 
better make several instructions, each with a fixed argument set. Types that are longer then machine word are always 
represented as integer number of words. Thus JIT compiler has to accept only word-size immediates. Immediate values 
longer then word could be treated as several word-size arguments. This simplifies the JIT compiler and makes the 
compilation process faster. 
 
A label as an argument of a bytecode instruction is a special case for the JIT compiler. Bytecode compiler can not 
calculate jump offset values as it does not know anything about the corresponding code templates. Thus it inserts some 
bytecode instructions to mark a label position and puts label code as an argument for various JUMP instructions. There 
are two essentially different strategies for the JIT compiler to replace label codes with the proper jump offsets. First 
strategy is to compile in two passes. In the first pass the addresses of all the labels are calculated. In the second the 
machine code is written.  
Another strategy is to compile in a single pass. Address of the very label met so far is used to compile all but the forward 
jumps. When the compiler meets a jump to an unknown label (forward jump) it records the position of the instruction 
argument in the compiled machine code and later writes there a proper value. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Labels as instruction operands 
 
Figure 5 shows what transformation with the initial source code should occur before the compilation to the machine 
code. 
 
 
3 Experience 
 
Suggested JIT compiler design was first developed to build a JIT compiler for the existing Lemick bytecode interpreter. 
Lemick is research project on building a environment-neutral language for easy and secure distributed programming. 
More information can be obtained on http://lb.to.kg. 
Beside other things the JIT compiler in Lemick is used to resolve opcodes overloading. Overloading is used when some 
operations have several meaning depending upon the execution context. Lemick allows remote execution of the program 
threads over the network. Remote threads should use specific implemetation of many operations, such as global 
variables access, IO and other. This can be very effectively achieved with a JIT compilation. 
 
Lemick VM loosely follows load/store architecture. The registers are used to do all the calculations. Ten registers of 
various sizes are available. Lemick VM operates on five data types with 2 registers for every type. 
 

Type name Size in  
bytecode 
(bits) 

Size in VM (bits) description 

Integer 32 32 or 64 fastest available integer 

ENTER 
MRLAI 0 
MRIBI 2 
GRTAI 
JMFAI #l1 
MRIAI 1 
MLRAI 4 
l1: 
LEAVE

ENTER  
MRLAI 0x99dd00  
MRIBI 2  
GRTAI  
JMFAI 0x16  
MRIAI 1  
MLRAI 0x99dd04  
LEAVE 

 
if a > 2 then b = 1 

source code 

bytecode BC after the JIT 
compiler first pass 
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Long 64 32, 64 or 128 largest available integer 
Object 32 32 or 64 pointer type 
Float 32 32 32 bit float  
Single 64 64 64 bit float 
Double 128 64, 96 or 128 largest available float 

Table 1: Lemick VM data types 
 
There is a growing stack to save temprorary values and pass arguments to functions. Local and global variables are 
stored in the separate memory regions. Distinct commands are used to access local and global memory regions. Lemick 
VM and the JIT compiler was initially implemented for i86x-32 and ported to Sparc and MIPS. All the instructions were 
successfully implemented as relocatable. 
 
 
3.1 Benchmarks 
 
Tests were made on Pentium III 600Mhz running Linux 2.4.18 with GNU C 3.2. GNU time command was use to 
measure running time. Values in the table are the summary time in seconds spent by the program in kernel and user 
modes. First benchmark tests expressions evaluation and loops. Each row represents results for the same test but with the 
different variables types as denoted in the leftmost column. LJIT column shows the running time for the code compiled 
from Lemick Basic source. LJIT hw are running time for the same program but hand written bytecodes. Kaffe is a open 
source JIT-based Java VM, version 1.0.7. C column shows running time for non-optimized C code, C -O3 – for C code 
compiled with the most aggressive optimization.  To let reader feel how performance of compilers relates to the 
performance of interpreters there is a running time for the corresponding program in Perl.  Numbers in braces shows 
many times were faster LJIT (the first value) and LJIT hw (the second value) in the test. 
 

Type LJIT LJIThw Kaffe C C –O3 Perl 
double 2.746 0.814 12.469(4.54/15.30) 1.100(0.40/1.35) 0.556(0.20/0.68) 51.120(18.61/62.89) 
integer 0.776 0.452   0.659(0.84/01.45) 0.664(0.85/1.42) 0.278(0.35/0.61)  
float 1.337 0.682   6.235(4.66/10.02) 1.098(0.82/1.76) 0.554(0.41/0.81)  
long 1.199 0.781   3.250(2.71/04.16) 0.864(0.73/1.10) 0.460(0.38/0.58)  

Table 2: Arithmetic test task with different types of the variable for each test (leftmost column) 
 
Difference between performance of the optimized (hand-written) and non-optimized bytecode is very high. Hand-written 
bytecode delivers very high performance, up to the 80% of the optimized C code. Non-optimized bytecode runs runs 
approximately 2 – 3 times slower. There is no wonder in this since neither bytecodes compiler not JIT compiler do any 
optimizations. This paticular test is rather synthetic; it was chosen to demonstrate the best possible results for LJIT. On 
other tests even hand optimized bytecode will suffer from too little avaible integer-type registers. 
 
Three other benchmarks test LJIT performance on more realistic compuational problems. No manual optimizations were 
made in these tests. Meaning of the numbers is the same as in the test above. 
 

Test Task LJIT Kaffe C C –O3 
Prime numbers (loops, integer arith.) 2.912 2.047(0.70) 1.642(0.56) 1.766(0.60) 
Seive (arrays, integer arith.) 2.405 0.622(0.25) 1.073(0.44) 0.764(0.31) 
Pi value approx (double arith.) 1.038 4.463(4.29) 0.758(0.73) 0.674(0.64) 

Table 3: running time for various test tasks 
 
LJIT is considerably slower in integer arithmetic. It suffers from the lack of any bytecode-level optimization, especially 
register allocation. In tests where register allocation can not give much speed up LJIT shows much better results.  
 
 
4 Limitations 
 
Templates-based JIT compilation uses considerably more memory then interpreter. Generally templates-compiled 
machine code will be 5-20 times larger then the bytecode.  
For large programs compilation time may be unacceptable. This subject was extensively researched in connection with 
Java JIT compilers. Such techniques as compilation on request and background compilation can be easily applied to 
flatten the problem. 
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Templates-based JIT compiler implies certain limitations on the instruction set. For every instruction there should be a 
set of templates that correspond to all possible combinations of non-immediate arguments. In some cases number of 
templates needed to implement an instruction could be very large. For example RISC-style instruction  

opcode reg, reg, reg  
 
requires 323=32768 templates when reg is one of 32 registers. Run-time code generation systems [3] can solve this 
problem however at the cost of simplicity and portability.  
 
 
5 Conclusion 
 
Proposed JIT compiler may be used to bring the performance of the interpreted languages to the level comparable with 
the performance of the traditional static compilers. The most attractive features of the suggested technique are portability 
and implementation simplicity. Experience project shows that this approach can be potetially as fast as the current state-
of-the-art JIT compilers.  
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