
CLASS AND OBJECT ATTACHED
 EXCEPTION HANDLERS

A. Iliasov

Faculty of Computer Science, Kyrgyz-Russian Slavic University
Kyrgyz Republic, Bishkek
E-mail: alex@iliasov.org

This paper describes an approach to extending the exception handling mechanisms of
object-oriented languages by attaching exception handlers to classes and objects. Ob-
ject and class exception handlers bring advantages of the object-oriented program-
ming into error recovery actions and give opportunity to consider exception handling
policy at the early stages of the abstract class design. Special emphasize is given to
the realistic and efficient implementation suitable for statically-typed compiled lan-
guages. Discussion is based on Lemick language. The described extension is or-
thogonal to the existing exception handling mechanism and does not require any
changes to language syntax or grammar as it is fully expressed in terms of object-
oriented programming already present in the language.

1. Introduction

An exception is the indication of an abnormal situation that may occur during
program execution. For languages without exception handling mechanism handling an
exception means placing additional code for the detection of an erroneous condition
and passing information about the exception via return value. Global variables were
often used to save additional information about the exceptional situation. To make
exception handling more efficient, languages like C used dangerous constructions like
setjmp/longjmp and even pieces of assembly code. This made code hard to read and
maintain and thus was an additional source of problems. Exception handling is a lan-
guage extension specifically aimed on providing high-quality readable code with
structured error recovery actions. An exception in object-oriented programming is an
object describing an exceptional situation occurred somewhere in program. Such ex-
ceptions can be organized into inheritance hierarchies and extended to bring addi-
tional information. Exception handlers may also follow exceptions hierarchy and pro-
vide common actions for families of exceptions.

One major advantage of exception handling is that it provides a clear separation be-
tween the normal program code and code used for error recovery by aggregating all
the recovery activities into exception handlers. These handlers are associated with
lexical blocks or language structuring units, like methods, classes, modules and ob-
jects. Most languages with exception handling capabilities provide lexical block han-
dlers as the only way of attaching recovery code (C++, Java). However such handler
binding does not fit well to structuring used in object-oriented programming. The aim
of this work is to outline an approach to associating exception handlers with classes
and objects and to discuss possible implications for the language, the compiler and the
run-time system.

The further discussion is based on Lemick programming language project [1]. It is a
statically-typed language compiled into platform-independent virtual machine assem-
bler that is later transformed into a platform-dependent representation by just-in-time
compiler. Lemick has a support of concurrent and distributed programming (multi-
threading and distributed multi-threading). Rendezvous are used for message passing;
replicas and ultra-weak consistency model implement distributed shared memory

simulation. Extension of exception handling mechanism, including distributed ver-
sion is being developed now.

Lemick currently implements a standard approach to exception handling – handlers
are attached to lexical blocks and exceptions are objects. In Lemick any object can be
raised or signaled as an exception. Signaling means routine abort without trying to
handle the situation within the current methods. Raised exceptions may be handled
within the method or signaled outside if there is no appropriate handler. Methods and
classes may bring signature of the signaled exceptions. Lemick associate exception
handlers with blocks of code using the try-catch construct, only the termination model
is supported [2]. Syntax for try-catch is the given on fig. 1.The try-catch blocks can
be nested and the catch blocks must be arranged
so that
ExceptionClass1 <= … <= ExceptionClassN
Where <= holds if a class on the left side is either
a subclass or not relative of a class on the right
side. All classes are subclasses of Object class,
so catch-all rule may be the following:

catch e as Object.

Two built-in classes describing exceptional ob-
jects are provided for convenience: Exception
and InternalError

Though they contain the same members and methods, formally there is no relationship
between them (in terms of inheritance). InternalError and all its subclasses are spe-
cific in that they are ignored during compile time reliability checks and they can be
omitted in methods signature even if explicitly signaled. Run-time environment
knows about these classes and is able to create instances of them. Applications are
expected to extend the Exception class when they use exception handling for error
recovery since for an unhandled exception, run-time environment may choose some
default action. However it is not required to raise or signal solely instances or deri-
vates of the Exception and InternalError classes, any class instance can be raised
or signaled. This helps the developers to apply exception handling for the purposes
not directly related to error recovery.

2 Class handlers
Class handlers are class-attached exception handlers that can handle one or more

exceptions for all the instances of the class. As a class handler we may require an im-
plementation of some fixed interface containing a single public method with the fol-
lowing definition:
final interface StaticClassHandler
 declare public sub ClassHandlerStatic(e as Object)
end interface

This approach allows definition of only one exception handler that is basically a
method in the given class. The only argument of this method is the raised object. The
method can handle the situation and exit normally or do abnormal return using sig-
nal statement. Though such handler is not typed, unlike catch clause, implementa-
tion of catch-like behavior is rather straightforward:

try
 … ‘ protected region
catch a as ExceptionClass1
 … ‘ handler for ExceptionClass1
catch a as ExceptionClass2
 … ‘ handler for ExceptionClass2
...
catch a as ExceptionClassN
 … ‘ handler for ExceptionClassN
finally
 … ‘ clean-up action
end try

fig. 1. try-catch-finally syntax

Implementation of the class handler Corresponding try-catch syntax
public sub ClassHandlerStatic(e as Object)
signals1
 select case e
 case is is2 MyException1

 … ‘ do something
 case is is MyException2
 … ‘ do something
 case else
 signal e
 end select
end sub

try
… ‘ do something

catch e as MyException1
 … ‘ do something
catch e as MyException2
 … ‘ do something
catch e as Object
 raise3
end try

For complex classes, which derive part of their functionality from parents, it is possi-
ble to use the parent’s handlers4. For example, the catch-all action in the code above
may be substituted with a call to the parent’s handler, which was overrided5 by the
current handler:
catch e as Object
 SomeParentClass.ClassHandlerStatic6 this, e
end try

3 Object handlers
Attaching exception handler to an object means changing object properties or state
during execution, since an object handler is specific for the every object instance. This
is done by defining some (public) class property that describes the attached handler.
This description could be an instance of the following abstract class:
class ExceptionHandler
 declare public sub Handler(e as Object)
end class

Classes, for which instances we would like to have object-attached handlers, could be
derived from the following class:
class DynObjectHandler
 public ObjectHandler as ExceptionHandler
end class

Using this class is quite easy - we create an instance of a class derived from DynOb-
jectHandler and then assign the desired object handler. The definition above allows
re-attachment of handlers in any moment at any place, since ObjectHandler property
is declared public. To restrict access to this property it may be declared private or pro-
tected. For the case with private access modifier, handler must be attached inside of a
class constructor. Alternatively object-attached handler support can be provided by
implementation of interface with getters equivalent to the property declaration:
final interface DynamicObjectHandler
 declare public property get Handler as ExceptionHandler

1 it is the same as signals Object. It means that routine may signal anything.
2 case is construct expects binary operator name after it. operator is tests whether given object is an
instance of the given type.
3 raise with an argument is not permitted inside catch blocks, as well as any form of signal. raise
without arguments means re-raising in an outer scope.
4 applicable only to languages with single inheritance, such as Lemick in our case
5 note that ClassHandlerStatic was not declared as static (and it is also not final). Logically han-
dler is the same for all class instances and therefore it could be static. Unfortunately static methods can
be overrided.
6 though it may look like a static method call, it is actually a special syntax used to call non-static over-
rided methods

 declare public property get Handler(e as Object) as ExceptionHandler
end class

In this case we explicitly request an object to give run-time system a description of an
exception handler; the object can examine its current state and even the raised excep-
tion (for the second method prototype) and choose the best handler from the internal
collection of handlers. Class constructors or some other methods should configure ini-
tial internal state of the newly created object.

4. Adding support for class and object attached handlers
The described handler attachment scheme is useful only if exception binding

logic knows about it and is able to get use of it. Implementation of exception handling
mechanism is rarely discussed as it often uses low-level details and system-specific
features. That is also true for Lemick handlers binding algorithm:

a method source VM assembler

sub foo
try

 raise new Exception
catch e as Exception

 end try
end sub

 enter #96, 0
 ehtable L#97
l99:
 objvi #24, 8, r0p
 push r0p
 epop
 raise
l100:
 jump L101
l98: l101:
 signal
l96:
 leave
l97: 1 4 99 100 101 1 5 98 ; EH table

The exception handler search procedure:
1. Look for the first try block containing the instruction which has raised an exception, compiler must
place try-catch blocks so that the enclosing try-catch will always follow the enclosed one.
2. For every catch clause in the selected try-catch block check if the raised exception is an instance of
the class associated with the catch clause.
3. If matching catch found then it is invoked, at its end catch clause may either leave the whole try-
catch block or propagate an exception in an outer scope.
4. If no matching catch found in the current block then continue search in the enclosing try-catch block
5. If an exception is not handled within the current method, the method is aborted and the exception is
propagated to the caller’s context.

Now let us look what additions are required to support class and object handlers.

class source with class and object attached handlers VM assembly for method foo()
class ProtectedClass
extends DynObjectHandler
implements StaticClassHandler
 ‘ assign object handler in the constructor
 public sub New(OH as ExceptionHandler)
 ObjectHandler = OH
 end sub
 ‘ this is a class-attached handler (empty for brevity)

public sub ClassHandlerStatic(e as Object)
signals:end sub

public sub foo signals Exception
 signal new Exception

 end sub
end class

enter #120, 0
loadc sp[-4]
objvi #24, 8, r0p
push r0p
epop
signal
l120:
leave
l97: … ; EH table

loadc is a new instruction that loads this value (pointer to the current object instance
in a non-static methods) into internal hidden field. Now we have enough information

to include search for class and object handlers into handlers binding logic. Additional
handler binding steps are the following:
Step 0 is added before step 1 to look for an object-attached handler:
0a. If this values is not loaded then proceed with step 1
0b. if this is instance of DynObjectHandler then cast this to type DynObjectHandler, check if
this.ObjectHandler is not null and invoke this.ObjectHandler.Handler(e) where e is the
raised exception.
0c. Examine handler’s return context, if the exception is handled then exit binding procedure and con-
tinue execution after the point where the exception was raised, otherwise proceed with step 1

Step 5 is extended with lookup for a class handler before aborting the method:
5a. If this values is not loaded then proceed with step 5
5b. If this is instance of StaticClassHandler then cast this to StaticClassHandler and in-
voke this.ClassHandlerStatic(e) where e is the raised exception
5c. Examine handler’s return context, if the exception is not handled then propagate it to the caller’s
context, otherwise abort the method with predefined ClassHandledFailure exception.

Note that class handler does not do complete error recovery since method is aborted
without returning proper result. However successful execution of the class handler
guarantees that the object is in valid state and it is safe to operate on it.

5. Discussion
This work follows the general ideas of introducing class handlers presented in [3] and
[4]. Work [3] describes object-oriented exception handling build on the top of an ex-
isting dynamically-typed language using its reach reflection features. Unfortunately
the proposed ideas can not be directly applied to statically-typed languages such as
C++ or Java. The same holds for Beta language [6] which employs a class attached
and a number of other static handlers. Paper [4] suggests organizing objects into hier-
archies to facilitate exception handling activities and discusses an extension of C++
for these purposes. Class level handlers are described with a binding procedure similar
to those given in our work; however the proposed exceptions representation and pro-
posed syntax of extensions seem to contradict the existing C++ design. Also it is not
clear how the proposed model relates to the existing C++ exception handling mecha-
nism.

Acknowledgments
I would like to thank Alexander Romanovsky for his useful comments and sugges-
tions.

References

1. Lemick project website: http://lb.to.kg/
2. Goodenough, J.B.: Exception Handling: Issues and a Proposed Notion, Comm. ACM, 18(12), 1975.
3. C. Dony. A fully object-oriented exception handling system: rationale and Smalltalk implementation.
Springer Verlag , 2001, pp. 18-38 In Advances in Exception Handling Techniques (LNCS-2022), Eds.
A. Romanovsky, C. Dony, J.L. Knudsen, A. Tripathi
4. A.B. Romanovsky, I.V. Shturtz, V.R. Vassilyev. Designing fault-tolerant objects in object-oriented
programming. In Technology of Object-Oriented languages and Systems - TOOLS 7. Ed G. Heeg, B.
Magnusson, B. Meyer. 7th International Conf. on Technology of Object-Oriented Languages and Sys-
tems (TOOLS EUROPE'92), Dortmuth Germany - TOOLS V. 7. Prentice-Hall. 1992. pp.199-205.
5. A.F. Garcia, C. M. F. Rubira, A. Romanovsky, J. Xu. A Comparative Study of Exception Handling
Mechanisms for Building Dependable Object-Oriented Software. Journal of Systems and Software. 59,
pp. 197-222, 2001.
6. J.L.Knudsen: Exception Handling and Fault Tolerance in Beta. Advances in Exception Handling
TechniquesSpringer-Verlag, 2001.

